« Transcend Or Die | Main | Anthropic Breakthrough »

May 20, 2008

Comments

Great post. In the running for your best ever.
"To put a random number on it, I doubt that anything more than one-in-a-million g-factor is required to be a potential world-class genius, implying at least six thousand potential Einsteins running around today."
Let's hope it's not one-in-a-hundred-billion. Because then we may never see another potential Einstein.

For the life of me, I don't understand why no one else in the intelligent, persistent-maximizing space wants to start assembly line cloning/breeding our smartest existential risk minimizers besides me (and possibly one other person, I don't know if they're public about it). If this happened in the next few years, a lot of us could benefit from the potential accelerated breakthroughs starting 25-35 years from now. I think smart, open-minded folks (Eliezer, Robin, Aubrey) need to justify to us why they're not pounding the podium on this one NOW, at least anonymously.

Good post, minor nitpicks though:

IIRC, Einstein wasn't the first to try to develop a curvature theory of gravity. Riemann himself apparently tried. And, IIRC, Einstein was one of Riemann's students. Einstein brought to the table the whole thing about having to deal with spacetime rather than space.

As far as Mach's principle, I believe it's something a little different than what you said. It's more the whole thing of acceleration rather than velocity. It's sorta a notion that the inertia of an object derives from the distribution of all the rest of the mass in the universe. I beleive in pure form it's more a vague notion rather than a formalized principle. But it does inform GR and aspects of GR conform to it.

More generally, I'd like to toss out a bit wild guess/wild eyed thought based on this sort of thinking: even if Barbour's timeless universe is false, I'm going to guess that his type of configuration space is the "actual" configuration space. That is, it's a configuration space of relations between particles or whatever, rather than configurations of absolute positions. Now, instead of demanding that the relevant triangle inequalities hold, as he does... don't demand that. Then configurations where the inequality is violated would correspond to curvature. Maybe. Anyways, that's juat a vague notion on my part. If/when I have more of the relevant theoretical sophistication, I'll see if I can make this work, or of it goes kablewey.

Hopefully: nature vs nurture and all that. We probably would want to figure out how to reproduce the relevant training too. Further, that could apply to other people, not just the clones. And that, actually, seems to be what Eliezer is trying to do here in general, actually.

Psy-Kosh, you're copping out with a fake nitpick, in my opinion. Especially with your last two sentences. To avoid threadjacking, I invite you to continue the conversation on my blog.

If we take a statistical analysis of the scientists who tried using Einstein's method, what percentage would have been right? Aristotle was mentioned earlier. You can make a case that Marx and Freud tried using a similar style of reasoning without much success.

Cracking post, really well written. I feel as though this could have preceded the last few and stood up on its own, in which case I may have been more on board recently. But that's by the by - this all rang very true.

So how does one sit down in an armchair, think about what we know about protein folding, and go about solving the big problem? Einstein didn't start by studying AI, probability theory, Bayesian reasoning etc. What did he have that we all seem to find so elusive? There must be a more satisfactory answer than 'a really high g-factor.'

Joseph - don't just make that assertion, draw something from it. As Eliezer says, we should never forget the failures. But bearing in mind the 'quantum fiasco', and thinking about Einstein, it's those great minds producing those great leaps forward that have been responsible for a good deal of those ratchet turns: in particular the most difficult, unintuitive ones. Imagine if we could teach that!

Cosmides & Tooby's writing bugs me. They have a strong, strong tendency to assume you've read whoever they're complaining about and would love to hear about them. Even when they're right, it's the sort of thing that isn't likely to stand the test of time and can be deeply annoying to people who don't care about who they're arguing with.

Given this perspective on what Science does and does not encourage, can you explain the phenomenon of String Theory to us?

Neils Bohr -> Niels Bohr

Question: where are these great introductions to relativity you speak of? I've had difficulty with the subject thus far.

What did he have that we all seem to find so elusive?
A willingness to reconsider his assumptions, an openness to new explanations, and an abiding belief that hypotheses should always be tested against the data - and discarded if they were found wanting.

None of these traits are common, and they are especially rare here.

One way to evaluate a Bayesian approach to science is to see how it has
fared in other domains where it is already being applied. For instance,
statistical approaches to machine translation have done surprisingly well
compared to rule-based approaches. However, a paper by Franz Josef Och
(one of the founders of statistical machine translation) shows that probabilistic
approaches do not always perform as well as non-probabilistic (but still
statistical) approaches. Basically, maximizing the likelihood of a machine
translation system produces results that are significantly worse than
directly minimizing the error. The general principle is that you should
maximize the function that is closest to the criteria that you most care
about. Maximizing the probability of a system won't give you good results
if what you really care about is minimizing the error.

By analogy, maximizing the likelihood of scientific hypotheses may lead to
different results from minimizing the error. Currently, science tries to
minimize the error -- it is always trying to disprove bad hypotheses
through experimentation. The best hypotheses are the ones left standing.
If science switched to maximizing the likelihood of the best hypotheses,
this might lead to unintended consequences. For instance, it might be
easier to maximize the probability of your pet hypothesis by refining your
priors rather than by seeking experiments that could potentially disprove it.

"But sometimes experiments are costly, and sometimes we prefer to get there first... so you might consider trying to train yourself in reasoning on scanty evidence, preferably in cases where you will later find out if you were right or wrong. Trying to beat low-capitalization prediction markets might make for good training in this? - though that is only speculation."

Zendo, an inductive reasoning game, is the best tool I know of to practice reasoning on scanty evidence in cases where you'll find out if you were right or wrong. My view of the game: one player at a time takes the role of "reality", which is a single rule classifying all allowed things into two categories. The other players, based on a steadily growing body of examples of correctly classified things and the fact that the other player made up the rule, attempt to determine the rule first. This is fundamentally different from deduction games which traditionally have small hypothesis spaces (Clue - 324, Mystery of the Abbey - 24, Mastermind - I've seen 6561) with each hypothesis being initially equiprobable.

I've seen variants that can be played online with letters or numbers instead of pyramids, but frankly they're not nearly as fun.

"As of now, at least, reasoning based on scanty evidence is something that modern-day science cannot reliably train modern-day scientists to do at all."

By definition, scientists must use induction. Meant to say thinkers. IDK why thinkers mostly use induction now: maybe because the scientific funding model seems to work okay or because once you induce too far ahead, the content becomes useless if new research deviates the course a bit. For instance, all GUT/TOE physicists use Einstein-ian deduction in their elegant models. Einstein was lucky to be redeemed so quickly in that novel observatories were just being constructed. It is more expensive (maybe risky too) to turn the galaxy into a giant particle accelerator. In social sciences fileds, there is deduction. M.Yunus stimulated microfinance with a $26? loan by deducing collateral isn't a primary motivator in debt repayment (primary are entrepreneurial drive and quality-of-living gains). Drexler's nanotechnology vision was deduction. Many political programmes are deductions.

I agree with the general body content deduction is underappreciated. On reflection, the reason may be because an act of deduction almost always occurs in fields where there is no competing induction (ie. R.Freitas's simulations probably render much of E.Drexler's deductions obsolete). Thus deduction is a proxy to unearth low-hanging fruit? Deductive GUTs are fine, but will certainly be eclipsed by induced particle accelerator engineering blueprints one day. Deduction is free and addresses the issue of hypothesis generation somewhat.

I disagree strongly with the suggestion Einstein was a proponent of MWI. In fact, the overemphasis on deduction (defined here as induction from few au priors) caused him to waste the remaining 2/3 of his life attempting to disprove quantum phenomena, no?

Hopefully, ignoring ethics, cloning people for whatever reason will only ensure one of three (even less considering genetic mutations) character traits for whatever Eugenics you are practising. There is nurture and there is personal inspiration (probably could be defined here as intensity of rationality). If there is no Earth Summit in 1992, I probably don't pick up a bunch of environmental pamphlets one weekend, then. My decade-later clone exposed to Fox News maybe even exacerbates the leading extinction threat. Maybe if I don't grow up with cats, I don't make the inspired choice to value living beings; maybe my Fox News clone values killing Muslims and other "infidels" instead? If Eliezer doesn't read whichever sci-fi story inspired him, does he make the choice to focus upon AGI?

Spellchecker, fixed.

The Uncredible Hallq, I thought Feynman's intro to SR in the Lectures was perfectly okay. And I think John Baez has up an intro to GR.

But mostly, I haven't seen textbooks botching the explanation, because relativity is not something that you are supposed to be or allowed to be confused by, and so there is no excuse for confusing students. And because no one is "interpreting" the equations, of course. Three cheers of physical realism!

Re evolutionary psychology material, I strongly recommend The Moral Animal and Human Evolutionary Psychology to all fellow travelers.

In this post and the last you appear to be taking the opposite tack from the position you held in the discussion with Tom McCabe attached to Einstein's Arrogance. For example, you seemed to react poorly to the idea that the Einstein field equation has a relatively small information content, but later suggested that an AGI might get to that equation by watching an apple fall. Is this a shift in your position, or is there a distinction I've missed?

"IIRC, Einstein wasn't the first to try to develop a curvature theory of gravity. Riemann himself apparently tried. And, IIRC, Einstein was one of Riemann's students. Einstein brought to the table the whole thing about having to deal with spacetime rather than space."

Riemann died in 1866, Einstein was born in 1879. Riemann was a mathematician: he developed the math of differential geometry, among a great deal of other things, so a lot of stuff is named after him. Einstein applied Riemann's geometry to the physical universe. So far as I know, none of the early non-Euclidean geometry people thought that their geometries might be applicable in reality. The first theorems of hyperbolic geometry were produced in an attempt to create a contradiction and so prove Euclid's fifth postulate.

"I disagree strongly with the suggestion Einstein was a proponent of MWI. In fact, the overemphasis on deduction (defined here as induction from few au priors) caused him to waste the remaining 2/3 of his life attempting to disprove quantum phenomena, no?"

I have to find an actual physicist to discuss this with, but there appears to be nothing wrong with Einstein's quest for a unified theory; he simply didn't have the prerequisite information of QM at the time (Feynman, Dyson, etc. didn't develop renormalization until the 1940s). MWI wasn't proposed until several years after Einstein's death.

"A willingness to reconsider his assumptions, an openness to new explanations, and an abiding belief that hypotheses should always be tested against the data - and discarded if they were found wanting."

Plenty of scientists have these, and many of them make significant discoveries in their fields. But what was it about Einstein that let him discover, not one, but two of the fundamental theories of physics?

Celeriac, the distinction is that Tom McCabe seemed to me to be suggesting that the search space was small to begin with - rather than realizing the work it took to cut the search space itself down.

I second the recommendation of The Moral Animal. It is the best book I ever read, save one

"Celeriac, the distinction is that Tom McCabe seemed to me to be suggesting that the search space was small to begin with - rather than realizing the work it took to cut the search space itself down."

The search space, within differential geometry, was fairly small by Einstein's day. It was a great deal of work to narrow the search space, but most of it was done by others (Conservation of Energy, various mathematical theorems, etc., were all known in 1910). The primary difficulties were in realizing that space *could* be described by differential geometry, and then in deriving GR from known postulates. Neither of these involve large search spaces; the former follows quickly once you realize that your assumptions are inconsistent with Minkowski space, and there's only one possible derivation of GR if you do the math correctly. I don't know why the first one is hard, but Einstein showed twice that physicists are very reluctant to question background assumptions (linear time for SR, Euclidean space for GR), so we know it must be. The second one is hard because the human brain does not come equipped with a differential geometry lobe- it took me several hours to fully understand the derivation of the Schwarzschild solution from its postulates, even though the math is simple by GR standards and there is only one possible answer (see http://en.wikipedia.org/wiki/Deriving_the_Schwarzschild_solution).

Oh it took you several hours, did it?

It took me about a year to get through The Moral Animal, reading slowly and reflecting on everything. And The Moral Animal is an introduction to the subject, with no math that I can recall except what is required to explain the Prisoner's Dilemma.

"I have to find an actual physicist to discuss this with, but there appears to be nothing wrong with Einstein's quest for a unified theory; he simply didn't have the prerequisite information of QM at the time (Feynman, Dyson, etc. didn't develop renormalization until the 1940s). MWI wasn't proposed until several years after Einstein's death."

I can't recall what renormalization is. I think there is something wrong with Einstein's quest; he was akin to Aristotle's atom theory. The Sung Dynasty was about the earliest atoms could be empirically uncovered, and a GUT is about as far away from Einstein in terms of knowledge base. I actually think Einstein's biggest accomplishment was political: writing to FDR about the possibility of a nuke. Einstein is responsible in this regard for a year of robotics, car, and computer progress along with tens of millions of present Japanese and American lives.
I think the two characteristics that allowed Einstein to make 3 huge discoveries (Brownian motion, SR, GR) were his rich family that got him his patent clerk job and his willingness to be aloof and not follow the Popper-ian knowledge base of the time. I doubt he was the first to notice something wrong with phlogistan, but no one had the spare time and the determination to retool the knowledge base from ground zero (has anyone else ever taken an eight year diversion into mathematics to solve a single physics problem?).
I don't think he had the same respect for quantum theory, despite founding it, that he did for GR. It seemed like he was trying to graft "quantum effects that functioned as non-local wormholes" onto GR, rather than genuinely finding a GUT by respecting quantum theory. No doubt he would have immediately championed MWI, but it seems like he was genuinely trying to undercut Copenhagen Interpretation rather than building upon it (this is in response to EY's MWI comment in the thread starter).
All I'm saying is that if he would've realized the limits of his deductive method, he might've made even more contributions in his latter years and been the greatest thinker ever, instead of sharing the mantle with a handful of others.
Maybe the most cutting edge scientific field is genetics. Someone might be able to deduce a science of the behaviour of animal-human hybrids studying the input animal temperaments and physiologies, but a better avenue would be to be a protein folding scientist and learn how to cure cancer or diabetes or something. I don't want to speak for Einstein's study strengths and weaknesses, but maybe we'd have optical computers now if Einstein would've transitioned to optics instead of lasers. I can't think of any physical knowledge areas now that are in as bad shape as cosmology was pre-Einstein. The next Einstein will come from social science fields, probably (is why I mentioned M.Yunus). With computers, everything physics is research teams nowadays. Maybe M.Lazaridis funding a quantum computer research park, is the closest anyone now can come to advancing a theoretical physics field as much as Einstein (cosmology) did.

Typo. Sorry. Should say GUT where I wrote lasers. I'll proofredafjkdsf all my posts in future.

Tom: yow, sorry for the inaccurate info then. I was sure I had read he was a student of Riemann's.

Either way, I thought I read that _someone_ had been trying, and failing, to do a space curvature based theory of gravity before Einstein. But now I'm rather unsure. Oh well. Thanks for the correction.

phlogistan

I believe the good commenter means aether (as in Michelson-Morley)

Oh, speaking of brainfizzles on my part, may as well disregard my hunch above about relations being the "real" configuration space. The intuition that led me to that was based on a really really bad mental miscalculation of the number of degrees of freedom, confusing the dimensionality of the configuration space with the dimensionality of the associated hilbert space, and basically a whole bunch of mental booboos. So while the notion of 'violations' of some identities and inequalities might fit with curvature is still interesting to me, I'm, well, unbetting on that model. eye eeeeesh shtuuupid. :)

When Einstein invented General Relativity, he had almost no experimental data to go on, except the precession of Mercury's perihelion. And (AFAIK) Einstein did not use that data, except at the end.

Eliezer, I'd love to believe that too, but from the accounts I've read I don't think it's quite right. Because of his "hole argument", Einstein took a long detour from the correct path in 1913-1915. During that time, he abandoned his principle of general covariance, and tried to find field equations that would "work well enough in practice anyway." Apparently, one of the main reasons he finally abandoned that line of thought, and returned to general covariance, is that he was getting a prediction for Mercury's perihelion motion that was too small by a factor of 2.

So is it possible that not even Einstein was a Bayesian superintelligence?

Correction accepted.

Einstein wasn't even close to being a Bayesian superintelligence.

Richard:It took me about a year to get through The Moral Animal

What was it you think slowed you down? I got through it fairly quickly & I'm pretty sure I'm not smarter than you.

I'm genuinely curious - I was very slow with books of knowledge (if I finished them at all) till about last summer, the problem (among others) fixed itself, and the question of why (or rather, how) is driving me mad.

Einstein was able to arrive at all that because he submitted his own thinking to serious constraints. He never invented new things (multilapse theory worldpretation) but actually destroyed them.

What I don't buy from his arguments though is that somehow gravitational waves would accelerate you. The universe is already accelerating, there is only the need for the waves to appear to main relativity. They don't need to be the cause of acceleration, only if you assume the universe is not accelerating.

Of course there's also the question of other reference points like looking at the stars and how they behave, but that would be too anti-dialectical for the last 300 years of philosophysical thought.

The comments to this entry are closed.

Less Wrong (sister site)

May 2009

Sun Mon Tue Wed Thu Fri Sat
          1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31